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Abstract

This paper discusses non-parametric regression between Riemannian manifolds.
This learning problem arises frequently in many application areas ranging from
signal processing, computer vision, over robotics to computer graphics. We
present a new algorithmic scheme for the solution of this general learning problem
based on regularized empirical risk minimization. The regularization functional
takes into account the geometry of input and output manifold, and we show that it
implements a prior which is particularly natural. Moreover, we demonstrate that
our algorithm performs well in a difficult surface registration problem.

1 Introduction

In machine learning, manifold structure has so far been mainly used in manifold learning [1], to
enhance learning methods especially in semi-supervised learning. The setting we want to discuss
in this paper is rather different, and has not been addressed yet in the machine learning community.
Namely, we want to predict a mapping between known Riemannian manifolds based on input/output
example pairs. In the statistics literature [2], this problem is treated for certain special output man-
ifolds in directional statistics, where the main applications are to predict angles (circle), directions
(sphere) or orientations (set of orthogonal matrices). More complex manifolds appear naturally in
signal processing [3, 4], computer graphics [5, 6], and robotics [7]. Impressive results in shape pro-
cessing have recently been obtained [8, 9] by imposing a Riemannian metric on the set of shapes, so
that shape interpolation is reduced to the estimation of a smooth curve in the manifold of all shapes.
Moreover, note that almost any regression problem with differentiable equality constraints can also
be seen as an instance of manifold-valued learning.

The problem of learning, when input and output domain are Riemannian manifolds, is quite distinct
from standard multivariate regression or manifold learning. One fundamental problem of using
traditional regression methods for manifold-valued regression is that standard techniques use the
linear structure of the output space. It thus makes sense to linearly combine simple basis functions,
since the addition of function values is still an element of the target space. While this approach still
works for manifold-valued input, it is no longer feasible if the output space is a manifold, as general
Riemannian manifolds do not allow an addition operation, see Figure 1 for an illustration.

One way how one can learn manifold-valued mappings using standard regression techniques is to
learn mappings directly into charts of the manifold. However, this approach leads to problems
even for the simple sphere, since no single chart covers the sphere without a coordinate singularity.
Another approach is to use an embedding of the manifold in Euclidean space where one can use
standard multivariate regression and then project the learned mapping onto the manifold. But, as is
obvious from Figure 1, the projection can lead to huge distortions. Even if the original mapping in
Euclidean space is smooth, its projection onto the manifold might be discontinuous.

In this paper we generalize our previous work [6] which is based on regularized empirical risk min-
imization. The main ingredient is a smoothness functional which depends only on the geometric
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Figure 1: The black line is a 1D-manifold in R2. The average
of the red points in R2 does not lie on the manifold. Averaging
of the green points which are close with respect to the geodesic
distance is still reasonable. However, the blue points which are
close with respect to the Euclidean distance are not necessarily
close in geodesic distance and therefore averaging can fail.

properties of input and output manifold, and thus avoids the problems encountered in the naive gen-
eralization of standard regression methods discussed above. Here, we provide a theoretical analysis
of the preferred mappings of the employed regularization functional, and we show that these can
be seen as natural generalizations of linear mappings in Euclidean space to the manifold-valued
case. It will become evident that this property makes the regularizer particularly suited as a prior
for learning mappings between manifolds. Moreover, we present a new algorithm for solving the
resulting optimization problem, which compared to the our previously proposed one is more robust
and, most importantly, can deal with arbitrary manifold-valued input. In our implementation, the
manifolds can be either given analytically or as point clouds in Euclidean space, rendering our ap-
proach applicable for almost any manifold-valued regression problem. In the experimental section
we demonstrate good performance in a surface registration task, where both input manifold and
output manifold are non-Euclidean – a task which could not be solved previously in [6].

Since the problem is new to the machine learning community, we give a brief summary of the
learning problem in Section 2 and discuss the regularizer and its properties in Section 3. Finally,
in Section 4, we describe the new algorithm for learning mappings between Riemannian manifolds,
and provide performance results for a toy problem and a surface registration task in Section 5.

2 Regularized empirical risk minimization for manifold-valued regression

Suppose we are given two Riemannian manifolds, the input manifold M of dimension m and the
target manifoldN of dimension n. We assume thatM is isometrically embedded in Rs, andN in Rt
respectively. Since most Riemannian manifolds are given in this form anyway – think of the sphere
or the set of orthogonal matrices, this is only a minor restriction. Given a set of k training pairs
(Xi, Yi) with Xi ∈ M and Yi ∈ N we would like to learn a mapping Ψ : M ⊆ Rs → N ⊆ Rt.
This learning problem reduces to standard multivariate regression if M and N are both Euclidean
spaces Rm and Rn, and to regression on a manifold if at least N is Euclidean. We use regularized
empirical risk minimization, which can be formulated in our setting as

arg min
Ψ∈C∞(M,N)

1
k

k∑
i=1

L(Yi,Ψ(Xi)) + λS(Ψ), (1)

where C∞(M,N) denotes the set of smooth mappings Ψ between M ⊆ Rs and N ⊆ Rt, L :
N×N → R+ is the loss function, λ ∈ R+ the regularization parameter, and S : C∞(M,N)→ R+

the regularization functional.

Loss function: In multivariate regression, f : Rm → Rn, a common loss function is the squared
Euclidean distance of f(Xi) and Yi, L(Yi, f(Xi)) = ‖Yi − f(Xi)‖2Rn . A quite direct general-
ization to a loss function on a Riemannian manifold N is to use the squared geodesic distance
in N , L(Yi,Ψ(Xi)) = d2

N (Yi,Ψ(Xi)). The correspondence to the multivariate case can be seen
from the fact that dN (Yi,Ψ(Xi)) is the length of the shortest path between Yi and Ψ(Xi) in N ,
as ‖f(Xi)− Yi‖ is the length of the shortest path, namely the length of the straight line, between
f(Xi) and Yi in Rn.

Regularizer: The regularization functional should measure the smoothness of the mapping Ψ. We
use the so-called Eells energy introduced in [6] as our smoothness functional which, as we will show
in the next section, implements a particularly well-suited prior over mappings for many applications.
The derivation of the regularization functional is quite technical. In order that the reader can get the
main intuition without having to bother with the rather heavy machinery from differential geometry,
we will discuss the regularization functional in a simplified setting, namely we assume that the input
manifold M is Euclidean, that is, M is an open subset of Rm. The general definition is given in the
next section. Let xα be Cartesian coordinates in M and let Ψ(x) be given in Cartesian coordinates
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in Rt then the Eells energy can be written as,

SEells(Ψ) =
∫
M⊆Rm

t∑
µ=1

m∑
α,β=1

[( ∂2Ψµ

∂xα∂xβ

)>]2

dx, (2)

where> denotes the projection onto the tangent space TΨ(x)N of the target manifold at Ψ(x). Note,
that the Eells energy reduces to the well-known thin-plate spline energy if also the target manifold
N is Euclidean, that is, N = Rn. Let Ψ : Rm → Rn, then

SThinPlate(Ψ) =
∫
M⊆Rm

n∑
µ=1

m∑
α,β=1

[( ∂2Ψµ

∂xα∂xβ

)]2

dx. (3)

The apparently small step of the projection onto the tangent space leads to huge qualitative
differences in the behavior of both energies. In particular, the Eells energy penalizes only the
second derivative along the manifold, whereas changes in the normal direction are discarded. In the
case of m = 1, that is, we are learning a curve on N , the difference is most obvious. In this case
the Eells energy penalizes only the acceleration along the curve (the change of the curve in tangent
direction) whereas the thin-plate spline energy penalizes also the normal part which just measures
the curvature of the curve in the ambient space. This is illustrated in the following figure.

The input manifold is R and the output manifold N is a one-dimensional curve em-
bedded in R2, i.e. Ψ : R → N . If the images Ψ(xi) of equidistant points xi in the
input manifold M = R are also equidistant on the output manifold, then Ψ has no
acceleration in terms of N , i.e. its second derivative in N should be zero. However,
the second derivative of Ψ in the ambient space, which is marked red in the left fig-
ure, is not vanishing in this case. Since the manifold is curved, also the graph of Ψ
has to bend to stay on N . The Eells energy only penalizes the intrinsic acceleration,
that is, only the component parallel to the tangent space at Ψ(xi), the green arrow.

3 Advantages and properties of the Eells energy

In the last section we motivated that the Eells energy penalizes only changes along the manifold.
This property and the fact that the Eells energy is independent of the parametrization of M and N ,
can be directly seen from the covariant formulation in the following section. We briefly review the
derivation of the Eells energy derivation in [10], which we need in order to discuss properties of
the Eells energy and the extension to manifold-valued input. Our main emphasis lies on an intuitive
explanation, for the exact technical details we refer to [10].

3.1 The general Eells energy

Let xα and yµ be coordinates on M and N . The differential of φ : M → N at x ∈M is

dφ =
∂φµ

∂xα
dxα

∣∣∣
x
⊗ ∂

∂yµ

∣∣∣
φ(x)

,

where it is summed over double-occurring indices. This is basically just the usual Jacobian matrix
for a multivariate map. In order to get a second covariant derivative of φ, we apply the covariant
derivative M∇ of M . The problem is that the derivative M∇ ∂

∂xα

∂
∂yµ is not defined, since ∂

∂yµ is
not an element of TxM but of Tφ(x)N . For this derivative, we use the concept of the pull-back con-
nection∇′ [11], which is given as∇′ ∂

∂xα

∂
∂yµ = N∇dφ( ∂

∂xα )
∂
∂yµ , i.e., the direction of differentiation

∂
∂xα ∈ TxM is first mapped to Tφ(x)N using the differential dφ, and then the covariant derivative
N∇ of N is used. Putting things together, the second derivative, the “Hessian”, of φ is given in
coordinates as

∇′dφ =
[ ∂2φµ

∂xβ∂xα
− ∂φµ

∂xγ
MΓ

γ

βα +
∂φρ

∂xα
∂φν

∂xβ
NΓ

µ

νρ

]
dxβ ⊗ dxα ⊗ ∂

∂yµ
, (4)

where MΓ,NΓ are the Christoffel symbols of M and N . Note, that if M and N are Euclidean, the
Christoffel symbols are zero and the second derivative reduces to the standard Hessian in Euclidean

3



space. The Eells energy penalizes the squared norm of this second derivative tensor, corresponding
to the Frobenius norm of the Hessian in Euclidean space,

SEells(φ) =
∫
M

‖∇′dφ‖2T∗xM⊗T∗xM⊗Tφ(x)N
dV (x).

In this tensorial form the energy is parametrization independent and, since it depends only on in-
trinsic properties, it measures smoothness of φ only with respect to the geometric properties of M
and N . Equation (4) can be simplified significantly when N is isometrically embedded in Rt. Let
i : N → Rt to be the isometric embedding and denote by Ψ : M → Rt the composition Ψ = i ◦ φ.
Then we show in [10] that ∇′dφ simplifies to

∇′dφ =
([ ∂2Ψµ

∂xβ∂xα
− ∂Ψµ

∂xγ
MΓ

γ

βα

]
dxβ ⊗ dxα ⊗ ∂

∂zµ

)>
, (5)

where> is the orthogonal projection onto the tangent space ofN and zµ are Cartesian coordinates in
Rt. Note, that if M is Euclidean, the Christoffel symbols MΓ are zero and the Eells energy reduces
to Equation (2) discussed in the previous section. This form of the Eells energy was also used in our
previous implementation in [6] which could therefore not deal with non-Euclidean input manifolds.
In this paper we generalize our setting to non-trivial input manifolds, which requires that we take
into account the slightly more complicated form of∇′dφ in Equation (5). In Section 3.3 we discuss
how to compute∇′dφ and thus the Eells energy for this general case.

3.2 The null space of the Eells energy and the generalization of linear mappings

The null space of a regularization functional S(φ) is the set {φ |S(φ) = 0}. This set is an important
characteristic of a regularizer, since it contains all mappings which are not penalized. Thus, the
null space is the set of mappings which we are free to fit the data with – only deviations from the
null space are penalized. In standard regression, depending on the order of the differential used for
regularization, the null space often consists out of linear maps or polynomials of small degree.

We have shown in the last section, that the Eells energy reduces to the classical thin-plate spline
energy, if input and output manifold are Euclidean. For the thin-plate spline energy it is well-
known that the null space consists out of linear maps between input and output space. However,
the concept of linearity breaks down if the input and output spaces are Riemannian manifolds, since
manifolds have no linear structure. A key observation towards a natural generalization of the concept
of linearity to the manifold setting is that linear maps map straight lines to straight lines. Now, a
straight line between two points in Euclidean space corresponds to a curve with no acceleration in a
Riemannian manifold, that is, a geodesic between the two points. In analogy to the Euclidean case
we therefore consider mappings which map geodesics to geodesics as the proper generalization of
linear maps for Riemannian manifolds.

The following proposition taken from [11] defines this concept and shows that the set of generalized
linear maps is exactly the null space of the Eells energy.

Proposition 1 [11] A map φ : M → N is totally geodesic, if φ maps geodesics of M linearly to
geodesics of N , i.e. the image of any geodesic in M is also a geodesic in N , though potentially with
a different constant speed. We have, φ is totally geodesic if and only if ∇′dφ = 0.

Linear maps encode a very simple relation in the data: the relative changes between input and output
are the same everywhere. This is the simplest relation a non-trivial mapping can encode between
input and output, and totally geodesic mappings encode the same “linear” relationship even though
the input and output manifold are nonlinear. However, note that like linear maps, totally geodesic
maps are not necessarily distortion-free, but every distortion-free (isometric) mapping is totally
geodesic. Furthermore, given “isometric” training points,

dM (Xi, Xj) = dN (Yi, Yj), i, j = 1, . . . , k,

then among all minimizers of (1), there will be an isometry fitting the data points, given that such
an isometry exists. With this restriction in mind, one can see the Eells energy also as a measure of
distortion of the mapping φ. This makes the Eells energy an interesting candidate for a variety of
geometric fitting problems, e.g., for surface registration as demonstrated in the experimental section.
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3.3 Computation of the Eells energy for general input manifolds

In order to compute the Eells energy for general input manifolds, we need to be able to evaluate
the second derivative in Equation (5), in particular, the Christoffel symbols of the input manifold
M . While the Christoffel symbols could be evaluated directly for analytically given manifolds,
we propose a much simpler scheme here, that also works for point clouds. It is based on local
second order approximations of M , assuming that M is given as a submanifold of Rs (where the
Riemannian metric of M is induced from the Euclidean ambient space). For simplicity, we restrict
ourselves here to the intuitive case of hypersurfaces in Rs. The case of general submanifolds in Rs
and all proofs are provided in the supplementary material.

Proposition 2 Let x1, . . . , xm be the coordinates associated with an orthonormal basis of the tan-
gent space at TpM , that is p has coordinates x = 0. Then in Cartesian coordinates z of Rs centered
at p and aligned with the tangent space TpM , the manifold can be approximated up to second order
as z(x) = (x1, . . . , xs−1, fs(x)), where given that the orthonormal basis in TpM is aligned with
the principal directions we have

fs(x) =
s−1∑
α=1

να
(
xα
)2
,

where να are the principal curvatures of M at x.

For an example of a second-order approximation, see the approximation of
a sphere at the south pole on the left. Note, that the principal curvature, also
called extrinsic curvature, quantifies how much the input manifold bends
with respect to the ambient space. The principal curvatures can be com-
puted directly for manifolds in analytic form and approximated for point
cloud data using standard techniques, see Section 4.

Proposition 3 Given a second-order approximation of M at p as in Proposition 2, then for the
coordinates x one has MΓαβγ(0) = 0. If x1, . . . , xs−1 are aligned with the principal directions at p,
then the coordinate expressions for the manifold-adapted second derivative of Ψ (5) are at p

∂2Ψµ

∂xβ∂xα
− ∂Ψµ

∂xγ
MΓ

γ

βα =
∂2Ψµ

∂xβ∂xα
=

∂2Ψµ

∂zβ∂zα
+
∂Ψµ

∂zs
δαβνα. (6)

Note that (6) is not an approximation, but the true second derivative of Ψ at p on M . This is because
a parametrisation of M at p with an exponential map differs from the second order approximation
at most in third order. Expression (6) allows us to compute the Eells energy in the case of manifold-
valued input. We just have to replace the second-partial derivative in the Eells energy in (2) by this
manifold input-adapted formulation, which can be computed easily.

4 Implementation

We present a new algorithm for solving the optimization problem of (1). In comparison to [6], the
method is more robust, since it avoids the hard constraints of optimizing along the surface, and most
importantly it allows manifold-valued input through a collocation-like discretization. The basic
idea is to use a linearly parameterized set of functions and to express the objective in terms of the
parameters. The resulting non-linear optimization problem is then solved using Newton’s method.

Problem Setup: A flexible set of functions are the local polynomials. Let M be an open subset or
submanifold of Rs, then we parameterize the µ-th component of the mapping Ψ : Rs → Rt as

Ψµ(x) =
∑K
i=1 kσi(‖∆xi‖)g(∆xi, w

µ
i )∑K

j=1 kσj (‖∆xj‖)
.

Here, g(∆xi, w
µ
i ) is a first or second order polynomial in ∆xi with parameterswµi , ∆xi = (x−ci) is

the difference of x to the local polynomial centers ci, and kσi(r) = k( rσi ) is a compactly supported
smoothing kernel. We choose theK local polynomial centers ci approximately uniformly distributed
over M , thereby adapting the function class to the shape of the input manifold M . If we stack all
parameters wµi into a single vector w, then Ψ and its partial derivatives are just linear functions of w,
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which allows to compute these values in parallel for many points using simple matrix multiplication.
We compute the energy integral (2) as a function of w, by summing up the energy density over an
approximately uniform discretisation of M . The projection onto the tangent space, used in (2) and
(5), and the second order approximation for computing intrinsic second derivatives, used in (5) and
(6), are manifold specific and are explained below. We also express the squared geodesic distance
used as loss function in terms ofw, see below, and thus end up with a finite dimensional optimisation
problem in w which we solve using Newton’s method with line search. The Newton step can be
done efficiently because the smoothing kernel has compact support and thus the Hessian is sparse.
Moreover, since we have discretised the optimisation problem directly, and not its Euler-Lagrange
equations, we do not need to explicitly formulate boundary conditions.

The remaining problem is the constraint Ψ(x) ∈ N for x ∈M . We transform it into a soft constraint
and add it to the objective function as γ

∫
M
d(Ψ(x), N)2dx, where d(Ψ(x), N) denotes the distance

of Ψ(x) to N in Rt and γ ∈ R+. During the optimization, we iteratively minimize till convergence
and then increase the weight γ by a fixed amount, repeating this until the maximum distance of Ψ to
N is smaller than a given threshold. As initial solution, we compute the free solution, i.e. whereN is
assumed to be Rt, in which case the problem becomes convex. In contrast to a simple projection of
the initial solution onto N , as done in [6], which can lead to large distortions potentially causing the
optimization to stop in a local minimum, the increasing penalization of the distance to the manifold
leads to a slow settling of the solution towards the target manifold, which turned out to be much
more robust. The projection of the second derivative of Ψ onto the tangent space for Ψ(x) 6∈ N , as
required in (2) or (5), is computed using the iso-distance manifolds NΨ(x) = {y ∈ Rt|d(y,N) =
d(Ψ(x), N)} of N . For the loss, we use dN (argminy∈N ‖Ψ(x)− y‖ , Yi). These two constructions
are sensible, since as Ψ approaches the manifold N for increasing γ, both approximations converge
to the desired operations on the manifold N .

Manifold Operations: For each output manifold N , we need to compute projections onto the tan-
gent spaces of N and its iso-distance manifolds, the closest point to p ∈ Rt on N , and geodesic
distances on N . Using a signed distance function η, projections P> onto the tangent spaces of N or
its iso-distance manifolds at p ∈ Rt are given as P> = 1−‖∇η(p)‖−2∇η(p)∇η(p)T . For spheres
St−1 the signed distance function is simply η(x) = 1− ‖x‖. Finding the closest point to p ∈ Rt in
St−1 is trivial and the geodesic distance is dSt−1(x, y) = arccos 〈x, y〉 for x, y ∈ St−1.

For the surface registration task, the manifold is given as a densely sampled point cloud with surface
normals. Here, we proceed as follows. Given a point p ∈ Rt, we first search for the closest point
p′ in the point cloud and compute there a local second order approximation of N , that is, we fit the
distances of the 10 nearest neighbors of p′ to the tangent plane (defined by the normal vector) with
a quadratic polynomial in the points’ tangent plane coordinates using weighted least squares, see
Proposition 2. We then use the distance to the second order approximation as the desired signed
distance function η, and also use this approximation to find the closest point to p ∈ Rt in N . Since
in the surface registration problem we used rather large weights for the loss, Ψ(Xi) and Yi were
always close on the surface. In this case the geodesic distance can be well approximated by the
Euclidean one, so that for performance reasons we used the Euclidean distance. An exact, but more
expensive method to compute geodesics is to minimize the harmonic energy of curves, see [6].

For non-Euclidean input manifolds M , we similarly compute local second order approximations of
M in Rs to estimate the principal curvatures needed for the second derivative of Ψ in (6).

5 Experiments

In a simple toy experiment, we show that our framework can handle noisy training data and all
parameters can be adjusted using cross-validation. In the second experiment, we prove that the new
implementation can deal with manifold-valued input and apply it to the task of surface registration.

Line on Sphere: Consider regression from [0, 1] to the sphere S2 ⊆ R3. As ground-truth, we choose
a curve given in spherical coordinates as φ(t) = 40t2, θ(t) = 1.3πt + π sin(πt). The k training
inputs were sampled uniformly from [0, 1], the outputs were perturbed by “additive” noise from the
von Mises distribution with concentration parameter κ. The von Mises distribution is the maximum
entropy distribution on the sphere for fixed mean and variance [2], and thus is the analog to the
Gaussian distribution. In the experiments the optimal regularization parameter λ was determined by
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a) b) c) d)
Figure 2: Regression from [0, 1] to the sphere. a) Noisy data samples (black crosses) of the black
ground-truth curve. The blue dots show the estimated curve for our Eells-regularized approach, the
green dots depict thin-plate splines (TPS) in R3 radially projected onto the sphere, and the red dots
show results for the local approach of [8]. b) Cross-validation errors for given sample size k and
noise concentration κ. Von-Mises distributed noise in this case corresponds roughly to Gaussian
noise with standard deviation 0.01. c) Test errors for different k, but fixed κ. In all experiments the
regularization parameter λ is found using cross-validation. d) Test errors for different κ, but fixed k.

performing 10-fold cross-validation and the experiment was repeated 10 times for each size of the
training sample k and noise parameter κ. The run-time was dominated by the number of parameters
chosen for Ψ, and mostly independent of k. For training one regression it was about 10s in this case.

We compare our framework for nonparametric regression between manifolds with standard cubic
smoothing splines in R3 – the equivalent of thin-plate splines (TPS) for one input dimension –
projected radially on the sphere, and with the local manifold-valued Nadaraya-Watson estimator of
[8]. As can be seen in Figure 2, our globally regularized approach performs significantly better
than [8] for this task. Note that even in places where the estimated curve of [8] follows the ground
truth relatively closely, the spacing between points varies greatly. These sampling dependent speed
changes, that are not seen in the ground truth curve, cannot be avoided without a global smoothness
prior such as for example the Eells energy. The Eells approach also outperforms the projected TPS,
in particular for small sample sizes and reasonable noise levels. For a fixed noise level of κ = 10000
a paired t-test shows that the difference in test error is statistically significant at level α = 5% for
the sample sizes k = 70, 200, 300, 500. Clearly, as the curve is very densely sampled for high
k, both approaches perform similar, since the problem becomes essentially local, and locally all
manifolds are Euclidean. In contrast, for small sample sizes, a plausible a prior is more important.
The necessary projections for TPS can introduce arbitrary distortions, especially for parts of the
curve where consecutive training points are far apart, and where TPS thus deviate significantly from
the circle, see Figure 2a). Using our manifold-adapted approach we avoid distorting projections and
use the true manifold distances in the loss and the regularizer. The next example shows that the
difference between TPS and our approach is even more striking for more complicated manifolds.

Surface / Head Correspondence: Computing correspondence between the surfaces of different, but
similar objects, such as for example human heads, is a central problem in shape processing. A dense
correspondence map, that is, an assignment of all points of one head to the anatomically equivalent
points on the other head, allows one to perform morphing [12] or to build linear object models [13]
which are flexible tools for computer graphics as well as computer vision. While the problem is well-
studied, it remains a difficult problem which is still actively investigated. Most approaches minimize
a functional consisting of a local similarity measure and a smoothness functional or regularizer for
the overall mapping. Motivated by the fact that the Eells energy favors simple “linear” mappings,
we propose to use it as regularizer for correspondence maps. For testing and highlighting the role
of this “prior” independently of the choice of local similarity measure, we formulate the dense
correspondence problem as a non-parametric regression problem between manifolds where 55 point
correspondences on characteristic local texture or shape features are given (Only on the forehead we
fix some less well-defined markers, to determine a relevant length-scale).

It is in general difficult to evaluate correspondences numerically, since for different heads anatomi-
cal equivalence is not easily specified. Here, we have used a subset of the head database of [13] and
considered their correspondence as ground-truth. These correspondences are known to be perceptu-
ally highly plausible. We took the average head of one part of the database and registered it to the
other 10 faces, using the mean distance to the correspondence of [13] as error score. Apart from the
average deviation over the whole head, we also show results for an interior region, see Fig. 3 g), for
which the correspondence given by [13] is known to be more exact compared to other regions such
as, for example, around the ear or below the chin.
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a) Original b) 50% c) Target d) TPS e) Eells f) [12] g) Mask

Error in mm 2.97 (1.17) 2.31 (0.93) 2.49 (1.46)

Figure 3: Correspondence computation from the original head in a) to the target head in c) with 55
markers (yellow crosses). A resulting 50% morph using our method is shown in c). Distance of
the computed correspondence to the correspondence of [13] is color-coded in d) - f) for different
methods. The numbers below give the average distance over the whole head, in brackets the average
over an interior region (red area in g).

We compared our approach against [12] and a thin-plate spline (TPS) like approach. The TPS
method represents the initial solution of our approach, that is, a mapping into R3 minimizing the
TPS energy (3), which is then projected onto the target manifold. [12] use a volume-deformation
based approach that directly finds smooth mappings from surface to surface, without the need of
projection, but their regularizer does not take into account the true distances along the surface. We
did not compare against [8], since their approach requires computing a large number of geodesics in
each iteration, which is computationally prohibitive on point clouds. In order to obtain a sufficiently
flexible, yet not too high-dimensional function set for our implementation, we place polynomial
centers ci on all markers points and also use a coarse, approximately uniform sampling of the other
parts of the manifold. Free parameters, that is, the regularisation parameter λ and the density of
additional polynomial centers, were chosen by 10-fold cross-validation for our and the TPS method,
by manual inspection for the approach of [12]. One computed correspondence example is shown in
Fig. 3, the average over all 10 test heads is summarized in the table below.

TPS Eells [12]
Mean error for the full head in mm 2.90 2.16 2.15
Mean error for the interior in mm 1.49 1.17 1.36

The proposed manifold-adapted Eells approach outperforms the TPS method, especially in regions
of high curvature such as around the nose as the error heatmaps in Fig. 3 show. Compared to [12],
our method finds a smoother, more plausible solution, also on large texture-less areas such as the
forehead or the cheeks.
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